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NOTATION 

a Midsurface meridional radius 

b Distance between center of the circular meridian and the axis of 
l-evolution 

E Young's modulus of elasticity 

h Shell thickness 

n Number of circumferential waves in buckling pattern 

p Uniform external pressure 

u Midsurface meridional shell displacement 

v Midsurface circumferential shell displacement 

w Midsurface radial shell displacement 

6 Circumferential angle 

41 Meridional angle 

0 Circumferential stress 
0 

0. Meridional stress 

v Poisson's ratio 

iv 



ABSTRACT 

A series of eight plastic toroidal shell models of circular 
cross section covering a wide geometric range were designed, 
built, and tested under uniform external pressure. The results 
were compared to collapse pressure predictions of two analyses. 
One analysis agreed with experimental collapse pressure to with- 
in 10 percent for all but two of the models. The other analysis 
agreed with half the models tested to within 10 percent but 
seems to be too optimistic for certain geometries. Experimental 
strains were recorded and photographs were taken of the models 
undergoing deformation during testing. The test results and 
analytical predictions indicated that complete toroidal shells 
under uniform external pressure appear to be insensitive to 
imperfections. 

ADMINISTRATIVE INFORMATION 

The work described in this report was sponsored by the Naval Ship 

Systems Command under Task Area S-F 35.422.303, Task 1956. 

This report is based on a thesis investigation submitted to the 

Faculty of the School of Engineering and Applied Science of the George 

Washington University in partial satisfaction of the requirements for the 

degree of Master of Science in Engineering. 

INTRODUCTION 

The lack of sufficient experimental verification of theory for the 

toroidal shell under external pressure has precluded the serious con- 

sideration of this configuration for use as pressure hulls and storage 

tanks for undersea applications. This study is part of the effort to ex- 

plore novel concepts for undersea pressure-resistant structures to achieve 

increased structural efficiency. 

In the field of buckling of thin shells, the toroidal shell has 

received little attention compared to the cylinder, sphere, and cone. 

Koiter describes Machnig's paper on torus stability under uniform external 

pressure as a significant first step in the solution of the torus buckling 

References are listed on page 52. 
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problem. More recently, Jordan has performed a stability analysis on a 

torus under uniform pressure and axial loads. At about the same time, 

Sobel and Flügge '  developed a stability analysis for the toroidal shell 

under uniform external pressure and included test results of four models 

in a very narrow range of geometries which were in good agreement (+10 per- 

cent) with the analysis. Also, Bushneil ' has developed a general analysis 

for any shell of revolution which is applicable to the toroidal shell. 

The primary objective of this investigation was the experimental 

verification of analytical predictions of elastic buckling pressures for 

toroidal shells under uniform external pressure. The experimental models 

covered a wide range of geometries. Two analyses were used to give ana- 

lytical predictions — the Sobel and Flügge analysis and the Bushnell 

analysis.  In both analyses, a linear membrane prebuckling solution is used 

(although the Bushnell analysis has the capability of a nonlinear pre- 

buckling solution).  In the analysis of Sobel and Fliigge, stability 

equations for a torus are solved by Fourier series representations of the 

displacement components developed during buckling to calculate buckling 

pressure.  Bushnell's analysis solves the buckling problem with an energy 

method and the finite difference technique.  Both analyses are described 

in more detail in the appendix to this report.  For the experimental models 

of this study, buckling pressure calculations using Bushnell's analysis 

were performed at the Naval Ship Research and Development Center (NSRDC) 

using a computer program written by D. Bushnell.  Calculations by the 

analysis of Sobel and Flügge were performed by L.H. Sobel with a computer 

program at Lockheed Missiles and Space Company, Palo Alto, California.  In 

addition to the buckling pressure, the buckling mode was also determined 

analytically for each experimental model. The mode prediction consists of 

determining the number of circumferential (9-direction in Figure 1) waves 

and whether deformations are symmetric or antimetric about meridional (in- 

direction) diameter A-A shown in Figure 1. Some examples of symmetric and 

antimetric deformations are shown in Figure 2. 

In addition to the primary objective, there are two secondary ob- 

jectives: the use of measured strains and photographs to experimentally 

determine the buckling modes, and the comparison of measured experimental 

strains to calculated membrane strains. 
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Figure 1 - Toroid Geometry, Displacements,, and Stresses 
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•igure 2  - Some Examples of Symmetric and Antimetric Meridional 
Deformation  (a/h =  100,  n =  2) 

From Reference 3. 



MODEL DESIGN 

In order to ensure that the models would buckle elastically, it was 

necessary that the buckling stresses be below the proportional limit of 

the material. This required that the model material have a high ratio of 

proportional limit to Young':r. modulus and was the prime consideration in 

the selection of the material for the models. Other factors influencing 

the material selection were cost and ease of fabrication. 

The material selected was a plastic formed by the mixture of equal 

parts by weight of Versamid 140 polyamide resin and Epon 828 resin.  In 

addition to satisfying the previously mentioned considerations, the NSRDC 

shop personnel had experience in the techniques of mixing and casting the 

material to obtain models tree of air bubbles and cracks. 

The Young's modulus of the material was determined to be 314,000 psi 

by the National Bureau of Standards from compression testing of one of the 

material specimens formed at the same time the models were cast. The test 

was conducted at a stress rate of 100 psi per minute and a temperature of 

70-75°F which were to be the conditions for the model tests. Tuckerman 

optical strain gages were used to determine the strains. Young's modulus 

was not determined individually for each model cast. However, the NSRDC 

shop personnel had considerable experience in working with the plastic 

material and it was felt that this experience, together with careful con- 

trol of the fabrication process, would insure negligible variation in the 

Young's modulus among the castings. 

Several specimens were compression tested at NSRDC to determine the 

effect of varying stress rates on Young's modulus. These tests measured 

strain by a deflectometer which is a less accurate method than the 

TucNerman gages. A variation of less than 1 percent was found in Young's 

modulus in the range 60-320 psi/min.  Figure 3 is a typical compressive 

stress-strain curve for the model material obtained from the deflectometer 

compression tests at NSRDC. A Poisson's ratio of 0.4 was assumed for this 
7 8 

material. This value was used in experiments by Hyman and Uealey ' using 

the same material and curing process as employed in this study. 

The design of the experimental models was subject to certain con- 

straints and requirements which will be described prior to presenting the 

design procedure. 

4 
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The prime objective of this study is the comparison of analytical 

predictions and experimental results over a wide range of geometries. The 

model designs were based on Figure 4 which shows the relationship between 

the elastic buckling coefficient, based on the analysis of Sobel and Flügge, 

and the geometry.  (This figure is from Reference 3.) Points were selected 

on these curves as the experimental model geometries. Because of previous 

experimental work by Sobel for small values of a/(a+b) (0.111 and 0.1356), 

it was decided to emphasize higher values of this parameter in the model 

designs. Although Figure 4 is for v = 0.3 and the model material had a 

v = 0.4, good designs were obtained using this figure, and buckling 

pressures were calculated for v = 0.4 for comparison with experimental 

results. 

The size of the models was influenced by the diameter of the test 

chamber and the minimum shell thickness obtainable. Most of the models 

were to be tested inside a pressure chamber whos^ inside diameter was 

20 in. In order to provide sufficient clearance between the model and 

the chamber wall, the largest model dimension was limited to 19 in. NSRDC 

personnel experienced in casting and machining the plastic used in the 

models indicated the minimum thickness obtainable was 0.04 in.; herce, the 

minimum shell wall thickness was limited to this value in the modei designs. 

The combination of these two constraints restricted the models to a maxi- 

mum a/h ratio of 100 and also made the a/h value obtainable for a model 

dependent on its value of a/a+b. 

The process selected for constructing the models consisted of 

casting half-sections of each model to the final outside model dimensions 

in an aluminum mold and then machining the final inside dimensions. The 

models were completed by gluing the halves together at their equators. 

Considering this procedure, it was economical to select model designs so 

that two or three models had the same outside dimensions, allowing them to 

be made from a single mold. The design procedure will now be described. 

Several initial values of a/a+b were selected in the range 0.1 to 

0.45 in order to obtain models at intervals over the entire range 

depicted in Figure 4. These initial values were approximately 0.1, 0.2, 

0.3, 0.4, and 0.45. Ten models were designed, and in view of Sobel's 

previous experimental work at the low end of the a/a+b range, it was 
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From Reference 3. 

TABLE 1 

Toroid Model Designs 

Model a/a+b a/h Casting 
Mold ~ 

1 0.111 25 A 

2 0.220 50 not cast 

3 0.2183 25 B 

4 0.300 50 C 

5 0.298 25 C 

6 0.421 100 D 

7 0.420 50 D 

8 0.417 25 not cast 

9 0.455 100 E 

10 0.453 50 E 

_ 



decided to emphasize the middle and upper end of the range. For each value 

of a/a+b, various combinations of a and b were tried until values were 

found such that 2(a+b) was close to, but did not exceed 19 in. In order 

to use Figure 4, the models needed a/h values of 25, 50, or 100, as shown 

in the figure. Hence, for each a/a+b value, shell thicknesses were calcu- 

lated for a/h values of 25, 50, and 100. It was found that certain com- 

binations of a/a+b and a/h resulted in a shell thickness less than the 

minimum achievable value of 0.04 inch.  For this reason, designs for a/h 

= 100 and a/a+b < 0.4, and designs for a/h = 50 and a/a+b < 0.2 could not 

be built with the technique selected for model construction. At this 

point, the designs were almost in their final form. 

It was decided to alter the designs slightly so that more than one 

model could be cast in a single mold, since models with similar a/a+b 

ratios had almost the same overall diameter (2(a+b)+h) which would be the 

mold diameter. This was accomplished by altering the shell thickness and 

the dimension a to achieve the same value for (2(a+b)+h) for all models 

with similar a/a+b values. The dimension b and the a/h value were kept 

constant. The values used for (2(a+b)+h) and b were those of th« highest 

a/h design within the group having similar a/a+b values. As a result of 

these dimensional alterations, models with different a/h values originally 

having the same a/a+b values now had a/a+b values differing slightly from 

each other, and the designs were dimensioned so that the ten models could 

be cast in five molds. Table 1 shows the design values of a/a+b and a/h 

and indicates which models were cast in the same mold. Models 2 and 8 were 

not built because of time and cost limitations. 

In order to ensure that the models would fail by elastic buckling, 

the stresses at the buckling pressure were calculated using the following 

equations from page 33 of Reference 9 which are based on the linear mem- 

brane theory of toroidal shells. 

•.-*® 

% 
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Elastic buckling pressures were obtained from Figure 4 for each design. A 

design value of 325,000 psi was used for Young's modulus. Calculations 

showed that all stresses calculated were well below the yield strength of 

the material, and no stresses were higher than 1600 psi. Since Figure 4 

is for v = 0.3, and the models have v = 0.4, the stresses were recalculated 

when buckling pressures for v = 0.4 were computed. Again it was found that 

the stresses were well within the elastic range of the material, and no 

stresses exceeded 1900 psi. 

It is known that the use of linear membrane theory results in dis- 

continuous displacements in the crown region (<f) = 0 deg and 180 deg) of 

the toroid.  "   These discontinuities are eliminated in thin shell toroids 

by using a nonlinear membrane theory '  in which the determination of 

the forces is based on the deformed shape rather than, as in the linear 

theory, on the undeformed shape. Also, while the strains are assumed to 

be small, their derivatives are allowed to become large in the nonlinear 

membrane theory. Comparisons have been made between stresses calculated 

by linear and nonlinear membrane theories for thin toroids "  with the 

result that the differences are of minor importance for design purposes. 

This is because the largest difference (on the order of 20 percent) 

occurs in the circumferential stress; however, the circumferential stress 

is always lower than the meridional stress in a toroid, and the meridional 

stresses are almost identical to each other for the two theories. 

MODEL FABRICATION 

It was decided to build the toroid models by casting half sections 

to the final outside dimensions in female molds and machining the final 

inside dimensions. A machined joint was used in both halves of the model 

to aid in joining the halves together. Other fabrication techniques for 

constructing shells of revolution were available, including explosive 

forming metal shell halves and welding the halves together,  electroform- 
14 ing the complete shell using a wax mandril,  vacuum forming plastic on a 

male mold,  and pouring molten plastic over a male mold and curing to a 

hard shell. ' 
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Several factors entered into the decision of which fabrication 

technique to use. The use of plastic eliminated explosive forming from 

consideration. Vacuum forming would have required the use of a different 

type of plastic and would have been a more costly process. Pouring molten 

plastic over a male mold would have been satisfactory for the thinner shell 

designs, but to make the thicker toroids, it would have been necessary to 

build up layers of the plastic which could have resulted in nonuniform 

material properties. The chosen technique was thought to be a reliable 

one which would produce models of uniformly high quality and constant 

material properties. 

Figure 5 shows the apparatus used in casting the toroidal half 

sections. The casting surfaces of the aluminum molds were machined to a 

32 finish so that the outer surface of the casting would be smooth and not 

require further machining. The cavity radius and other critical mold 

dimensions were held to a tolerance of +0.001 in. The wood cores were 

used to avoid casting a large cross section and to reduce the amount of 

machining required. A large cross section could have caused cracking in 

the casting while curing for the following reason: The chemical reaction 

of the plastic during curing is one that develops heat. In a large cross 

section, the surface near the aluminum mold would be cooler than the 

interior of the casting, and this uneven temperature distribution could 

cause cracking in the hardened casting. The use of wood cores avoided 

this problem by keeping the casting cross section to a minimum (approxi- 

mately 1/4 in. thick). 

The fabrication sequence for a typical toroidal shell began with 

heating the aluminum mold to 110°F in an oven.  The Versamid 140 and Shell 

Epon 828, not yet mixed, were heated to 125°F. The wood core was wrapped 

with cellophane tape to provide a nonporous smooth surface and then coated 

with a silicone grease as a parting agent (Figure 6a). This core 

preparation was the result of much trial and error directed at solving the 

problem of the core being difficult and at times impossible to remove 

from the cured casting. This was due to the wood grain providing a ho.'d 

for the casting to resist the removal of the core. Another more expensive 

solution to the problem would have been to machine an aluminum core. The 

mold was removed from the oven and brushed with polyvinal alcohol as a 



SHELL CASTING 

Figure 5 - Typical Casting Fixture for Toroid Models 
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parting agent (Figure 6b). The core was then placed in the mold and 

supported by spacer rings (Figure 6c). The rings and top edge of the core 

were'beveled to allow easy removal after the casting hardened. Clamps 

were used to prevent movement of the core after it was centered in the 

mold. Figure 5 shows the complete setup in detail. 

The Versamid 140 and Shell Epon 828 were removed from the 125°F 

oven, carefully weighed and mixed to make a mixture of equal weights of 

Versamid and Shell Epon. This mixture was poured into the mold from the 

outer edge, and flowed around the core and up to the inner edge, pushing 

the air ahead of it (Figure 6d). The mixture was poured until it was just 

below the top edge of the inner and outer spacer rings. The casting was 

cured by allowing the mold to remain undisturbed for 24 hours at room 

temperature (70-80°F). After the casting had cured, the core and spacer 

rings were removed from the mold. The casting was not removed from the 

mold at this time, but was inspected for any flaws or air pockets. 

The mold and casting were then mounted on a lathe for machining of 

the inner surface to the final radius and forming the joint on the inner 

and outer edges (F'gure 6e). After the machining, the finished half shell 

was removed from the mold.  It was found that gently pulling the shell 

away from the mold at the outer edge and directing an air stream into the 

space helped to free the shell from the mold. Figure 6f shows the two 

halves of a typical toroidal model ready to be joined.  The machined joint 

on the inner and outer edges can be seen in this figure. The completed 

halves were stored in a constant temperature room until assembly to pre- 

vent deformation due to day-night temperature fluctuations. The constant 

temperature room was maintained at 70-7S°F and 40 percent humidity. 

Prior to joining the halves of each model, thickness measurements 

were taken using an Ames dial gage. Table 2 presents the measured thick- 

ness for each model and a comparison with the design thickness desired. 

It is seen that the average measured thicknesses differ from the design 

values by 7.5 percent or less. The measured variation indicates the 

degree of nonuniformity in the measured thickness of each modei and is the 

difference between the maximum measured thickness and the minimum measured 

thickness expressed as a percentage of the minimum measurement.  For 

several models this variation is greater than 10 percent. 

11 



Figure 6 - Steps in Model Construction 

Figure 6a - Wood Core Prepared 
for Casting 

Figure 6b - Applying Parting Agent 

to Mold 

Figure 6c - Placing Wood Core 

in Mold 
Figure 6d - Pouring Liquid Plastic 

into Mold 

12 



Figure 6e - Machining Inner Surface 
of Shell 

Figure 6f - Shell Halves Prior 
to Joining 

) 

Figure 6g - T'.iree Completed Toroid Models 
(Models 1, 5, 10) 
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TABLE 2 

Shell Thicknesses 

Model 

1 

3 

4 

5 

6 

7 

9 

10 

D 
in. 

0.040 

0.079 

0.055 

0.109 

0.040 

0.080 

0.040 

0.080 

'A 
in. 

0.043 

0.080 

0.0575 

0.116 

0.043 

0.082 

0.038 

0.084 

1.075 

1.013 

1.045 

1.064 

1.075 

1.025 

0.950 

1.050 

Measured 
Variation 

max" min 

min 
percent 

7.3 

25.0 

hA 
15.0 

20.0 

6.3 

14.0 

6.3 

Notes 
Subscript D indicates design value. 

Subscript A indicates average measured 
value. 

14 



The model halves were joined together using the same mixture of 

Versamid and Shell Epon as was used in casting the shells. Figure 6g shows 

three models representative of the range of geometries included in this 

study. A 1/16-in. diameter hole was made at the outer equator of each 

model, and a hollow plastic vent tube was attached to the shell over the 

hole. On Models 1, 3, 5, 7, and 10 this tube was attached with an epoxy 

cement using a small plastic collar for support.  After the test of 

Model 1, many cracks were visible in the shell near the attachment, indi- 

cating that the cementing of the collar and tube to the shell with the 

brittle epoxy restricted the shell deformation in this area. The thinner 

the shell and the greater the curvature, the more significant would be 

this effect. Cracks in this area were not observed on previous tests of 

Models 3, 5, 7, and 10. On subsequent Models 4, 6, and 9, the vent tube 

was attached with Coast Pro-Seal 890 which is a flexible cement. This 

provided a good attachment and offered no restriction to shell deformation. 

The hollow plastic vent tube served a dual role: it was the means of 

supporting the model free and clear during the test, and it was an air 

passageway from the interior of the model.  As a check on the circularity 

of the complete toroid model, measurements were taken or the outer-edge 

diameter (D) and the meridional cross section diameter (d) and are presented 

in Table 3. The measured variation gives the deviation from a perfect 

circle based on maximum and minimum measured dimensions. These measure- 

ments indicate negligible variation in D and a small, but perhaps sig- 

nificant variation in d. Table 4 compares the design values of geometric 

parameters a and b with the values based on average measured diameters and 

thicknesses. It is seen that agreement is very good. 

TESTING 

Two testing schemes were used in the experimental program. Models 

1, 3, 5, 7, and 10 were tested using the apparatus diagrammed in Figure 7. 

In this scheme, the load was applied by pressurizing a tank containing the 

model. The interior of the model was vented to the atmosphere through a 

hollow plastic tube from which the model was supported in the tank. This 

scheme did not permit visual observation of the model during testing. A 

second scheme was used for Models 4, 6, and 9 which did allow the model to 
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TABLE 3 

Circularity Measurements 

Model 
°0 

in. 

DA 
in. 

Measured 
Variation 
0    -o ,„ 

n>ax    min 

D . mm 
percent 

d0 
in. 

dA 
in. 

Measured 
Variation 
d     -d . 

max   mm 
d . nun 

percent 

i 18.040 18.078 0.04 2.040 2.049 0.9 

J 18.224 18.182 0.09 4.040 4.038 0.9 

4 18.387 18.353 0.03 5.555 5.541 3.1 

5 18.387 18.303 0.09 5.555 5.552 1.4 

6 19.040 18.963 0.07 8.040 8.020 2.4 

7 19.040 18.995 0.2 8.040 8.100 1.7 

9 17.640 17.606 0.1 8.040 8.050 0.9 

10 17.640 17.547 0.06 8.040 8.070 1.2 

Subscript 0 indi cdtes de« ign value. 

Subscript A indi cates average measured value 

|--d 

P3ESSUPE  GAGE 

CONTROL   VALVE 

AIR PRliS'JRt   SOURCE 

TABLE 4 

Geometric Model Parameters a and b 

Model 
40 
in. 

aA 
In. 

aA 
aD 
In. 

bo 
in. 

bA 
in. 

bA 
b0 
in. 

1 1.000 1.003 1.003 8.000 7.965 0.996 

3 1.981 1.979 0.999 7.092 7.072 0.997 

4 2.750 2.742 0.997 6.416 6.406 0.998 

5 2.723 2.719 0.999 6.416 6.376 0.994 

6 4.000 3.988 0.997 5.500 5.172 0.995 

7 3.980 4.009 1.007 5.500 5.44« 0.991 

9 4.000 4.006 1.002 4.000 4.778 0.995 

10 3.980 3.993 1.003 4.800 4.739 0.987 

Subscript D indicates design v lue. 

Subscript A indicates value ca 
measured diameter and thicknes« 

culated fn' average 

<J 

STRAIN GAGE WIRES 

BLEED VALVE 

TRANSDUCER 

PRISSURE TAN« 

STRAIN PLOTTER   STRIP CHART RECOR0ER 

Figure 7 - Schematic Diagram of Test Apparatus for Models 1, 3, 5, 7, 10 
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be observed and photographed during testing. The apparatus for this test 

method is diagrammed in Figure 8. This was a vacuum type test in which 

the air inside the model was partially removed so that atmospheric pressure 

provided the load. 

Electrical resistance strain gages were applied to the outer surface 

of most of the models to compare experimental strains with calculated mem- 

brane strains, to determine the buckling mode, and to see if the buckling 

strains were elastic. The degree to which each model was strain gaged was 

influenced by the testing scheme used and the results of preceding tests 

in the experimental program. The gages were applied so as to measure 

>        strain in the circumferential and meridional directions. Models 1, 3, 5, 

and 10 were the most extensively gaged models, Model 7 was not gaged for 

reasons which will be discussed later, and Models 4, 6, and 9 were ob- 

served visually and photographed and carried only one gage. The gages 

were Bud Metalfilm C40-111D-R2VC two-element rosette gages, temperature- 

compensated for plastic, with elements oriented perpendicular to each 

other. 

It was recognized that gage heating due to the applied gage voltage 

during the test could cause the plastic to soften and produce a drift in 

the gage reading. To investigate this possibility, a gage was applied to 

a piece of the model material having the thickness of the thinnest toroidal 

shell. Gage voltages from 0.5 to 2.5 volts were applied in increments, 

each increment being held for 45 min.  It was found that a voltage of 

1 volt or less produced negligible drift; hence, during the model tests, 

a gage voltage of 1 volt was used.  Lower voltages would have decreased 

the sensitivity of the recording instruments. 

Models 10, 7, 3, 5, and 1 were tested in that order using the 

scheme depicted in Figure 7.  The locations of the strain gages on these 

models are shown in Figures 9, 10, 11, and 12. The number of gages used 

per model increased with each succeeding model test in order to more fully 

determine the model behavior. The gage pattern used on Model 1 provided a 

very good determination of the model behavior. Mod.?l 7 was not gaged for 

the following reason: After Model 10 was tested, it was apparent that the 

desired stress rate of 90 psi/min. could not be achieved due to the time 

required to read the gages at each pressure increment.  It was then decided 
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CONTROL  VALVE 

VACUUM RESERVOIR 

w 
STRIP CHART RECOROCR       MtRCURY MANOMETER 

Figure 8 - Schematic Diagram of Test Apparatus for Models 4, 6, 9 

JL, + INDICATES TWO-ELEMENT STRAIN GAGE ROSETTE 

270-DEGREE MERIDIAN 

Figure 9  - Strain Gage Locations  for Model   10 

J., + INDICATES TW0-1EMENT STRAIN GAGE ROSETTE 

.•'-If,«::  MERIDIAN 

Figure   10  - Strain Gage Locations  for Model  3 
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J., + INDICATES TWO-ELEMENT STRAIN GAGE ROSETTE 

270-OEGREE MERIDIAN 

Figure 11 - Strain Gage Locations for Model 5 

A, + INDICATES TWO-ELEMENT STRAIN GAGE ROSETTE 

270-DCGREE MERIDIAN 

Figure 12 - Strain Gage Locations for Model  1 
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to omit gages fiom Model 7 and test at the 90 psi/min. stress rate to 

detect any effect of the altered stress rate on the model behavior. The 
7 8 

90 psi/min. rate was chosen because it had been used by Hyman and Healey ' 

in experiments on models of the same material as used in this study. 

The test apparatus shown in Figure 7 will now be described. The 

model was suspended in the pressure t- nk from the vent tube and did not 

touch the tank walls or bottom. The tube was attached to a pressure 

fitting which passed through the top of the tank. The venc tube was open 

to the atmosphere, subjecting the interior of the model to atmospheric 

pressure during the test. The pressure fitting was also used to pass the 

strain gage wires out of the pressure tank to the recording equipment 

which consisted of a 48-channel strain plotter and a 2-channel strip chart 

recorder. At each pressure increment during the test, the strain plotter 

recorded the strain measured by each gage element. This resulted in a 

point plot of strain versus pressure for each gage element. The strip 

chart recorder continuously monitored one strain gage element and the 

pressure applied to the model. One channel was connected to a strain gage 

element and provided a continuous plot of strain versus time. This plot 

detected any creep taking place at that gage location. The second channel 

recorded the pressure on the model versus time. A pressure transducer con- 

nected to an opening in the tank top provided the pressure reading. All 

of the recording instruments were carefully calibrated before each test. 

The pressure in the tank was regulated by the control valve, and the bleed 

valve was used to relieve the tank  .jssure at the end of a test phase. 

Models 1, 5, and 10 were each subjected to three pressure runs, the 

third ending in failure of the model. The first run loaded the modei to 

half its theoretical buckling pressure. The second run applied load until 

nonlinearity was observed in the strain plots. The third run applied load 

until the model collapsed. At the end of each run the pressure on the 

model was completely relieved. The first run served as a checkout of the 

pressurizing system and the recording system. The second run detected 

any permanent set in the strain gages when the pressure was relieved. This 

would indicate yielding of the model material. Model 3 was subjected to 

just two pressure runs. The model failed immediately after the start of 

nonlinear strain behavior during the second run. Model 7 had no gages and 
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was tested in one pressure run.  Each pressure run consisted of small 

increments of pressure after each of which strain gage readings were 

recorded on the strain plotter. The strip chart recorder provided a con- 

tinuous record of pressure and strain. Model failure was detected by a 

sudden drop in pressure. 

Models 9, 6, and 4 were tested last and in that order using the test 

apparatus diagrammed in Figure 8. The model was suspended from an over- 

head bracket by flexible plastic tubing connected to the vent tube at one- 

end and to a coupling at the other end.  From this coupling, plastic 

tubing was connected to the control valve and the manometer. The control 

valve, vacuum reservoir, and vacuum pump were also connected by flexible 

plastic tubing. A large sheet of plexiglas was placed in front of the 

model to protect observers from shell fragments at failure. One strain 

gage rosette was applied to each model at the location 6 = 270°, <j> = 0? 

During the tests of Models 6 and 9, only one gage element could be recorded 

because cf equipment limitations at the time of the test; however, both 

elements were recorded on Model 4. The 2-channel strip chart recorder was 

used to record the strains versus time. Pressure was not recorded con- 

tinuously because the available transducer would not work satisfactorily 

with a vacuum.  Pressure readings were hand marked on the strain record. 

It was found that for photographic purposes, additional light would 

be needed on the models duiing the tests. This was provided by two 100- 

watt light bulbs placed on opposing sides of the models.  In order to 

reduce glare, the additional light was placed on the same side of the 

plexiglas as the model, and the photographic angle was perpendicular to 

the plexiglas sheet. The camera was mounted on a tripod approximately 

20 in. in front of the plexiglas, and the model was 2 in. behind it. The 

camera was a Polaroid black-and-white with automatic light exposure con- 

trol and was manually operated during each test. The tests of Models 4 and 

6 utilized mirrors to allow both crown areas (<j> = 0°, «j> = 180°) to be 

visible in the same photograph. These were the areas of greatest defor- 

mat i on. 

Model 9 was tested in two pressure runs; Models 4 and 6 were each 

tested in three runs. Each run consisted of stepwise increases in the 

vacuum regulated by the control valve and indicated on the mercurv 
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manometer. The low buckling pressures and the taking of photographs 

resulted in slower stress rates than were planned. 

Table 5 gives the stress rate for each model tested. The most 

highly stressed location on the models, meridional stress at <J> = 270°, 

was used in determining the stress rate. 

DISCUSSION OF RESULTS 

Table 6 gives the comparison between the experimental collapse 

pressures and the analytical predictions of elastic buckling pressures for 

each model tested.  Average measured values of geometric parameters were 

used in calculating the Sobel and Flügge and the Bushneil analytical pre- 

dictions. Any variation between test and theory of less than 10 percent 

must be considered unavoidable due to the possibility of random experi- 

mental error. Hence, only variations greater than 10 percent will be con- 

sidered significant in comparison with analyses. It is seen that with the 

exception of Models 1 and 9, the experimental collapse pressures agree with 

the Bushneil analytical predictions to within +10 percent. Agreement to 

within +10 percent is also obtained with the Sobel and Flügge analytical 

predictions for Models 5, 6, 7, and 10. It is noted that with the ex- 

ception of Model 6, the Sobel and Flügge analysis predicts higher buckling 

pressures than the Bushnell analysis. This seems to indicate that the 

Bushnell analysis is the more conservative of the two. The fact that 

analyses are in significant disagreement with the experimental results for 

Models 1 and 9 will be discussed lpter. The agreement of results for 

Models 3 and 4 with the Bushnell analysis but not with the Sobel and 

Flügge analysis is of uncertain importance.  It could indicate a geometric 

range where the Sobel and Flügge analytical predictions become too opti- 

mistic. However, more than two models are needed to make a definite 

determination. The factor of model stress rate does net appear to have 

any significant effect on model behavior for rates of 90 psi/min. or less. 

The experimental stress rates shown in Table 5 did not appear to influence 

the degree of agreement between test results and analytical predictions. 

The test results will now be used to indicate the effect of im- 

perfections on toroidal shells. Hutchinson  has determined that toroidal 
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shell segments subject to uniform external pressure are for the most part 

imperfection-sensitive. However, no work could be found in the literature 

on complete toroids. The Southwell method  was used to calculate a 

collapse pressure for each model using the experimental strain data. The 

purpose of this method is to give the pressure at which an imperfection- 

free (perfect) model will fall. The validity of the Southwell calculation 

depends on the type of equilibrium exhibited by a perfect model at the 

buckling pressure. The type of equilibrium indicates the post-buckling 

behavior.  Figure 13 depicts the neutral, stable, and unstable equilibrium 

states. The solid lines indicate the post-buckling behavior of perfect 

models. The dashed lines indicate the behavior of imperfect models. 

Since no model can be constructed completely free of imperfections, all 

experimental models fall into the imperfect model category. As shown in 

Figure 13a, for a neutral equilibrium state, the load on an imperfect model 

asymptotically approaches the buckling pressure from below as deflections 

increase.  Collapse occurs at or slightly below the theoretical pressure. 

Near the buckling pressure, deflections can increase with no increase in 

load.  If the model can sustain large deflections, and the perfect shell 

is of a stable equilibrium state, Figure 13b, then the pressure can be 

increased above the theoretical buckling pressure before the model col- 

lapses.  If a perfect shell is of the neutral or stable equilibrium state, 

then the imperfect model is said to be insensitive to imperfections be- 

cause imperfections do not cause a significant reduction in the collapse 

pressure compared to the theoretical buckling pressure for a perfect shell. 

An imperfect model is sensitive to imperfections if the perfect shell is 

of an unstable equilibrium state as shown in Figure 13c. The effect of 

imperfections is to cause the model to fail at a pressure significantly 

less than the theoretical buckling pressure. This type of behavior is 

characterized by the complete spherical shell. 

The Southwell method is valid only for the neutral equilibrium 
18 

state. According to Roorda,  the Southwell method overestimates the 

buckling pressure for a stable equilibrium state and underestimates it for 

an unstable state. The fact that most of the model results in Table 6 are 

in good agreement with one or both analyses indicates a neutral equilibrium 

state and, hence, insensitivity to imperfections. The close agreement 
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between test pressures and Southwell pressures for Models 1, 3, 4, 5, and 

b  also indicates insensitivity to imperfections.  Imperfection sensitivity 

would be indicated if the Southwell pressures were significantly above the 

test pressures. None of the Sout'well pressures calculated were signifi- 

cantly above the test pressures. 

The results of the test of Model 1 can be interpreted in several 

ways. On examination of the model after failure, it was observed that the 

area of failure was a 90-deg segment in the circumferential direction 

which included the point of attachment of the vent tube. Much local 

cracking was evident in the shell near the vent tube. The remainder of 

the model was intact. The model could have undergone a premature failure 

caused by a too rigid attachment of the vent tube to the shell. This 

could have created a locrl hard spot, preventing the shell from deforming 

at this location during the test. This, in combination with the high 

meridional curvature, might have caused cracking at low piessures. How- 

ever, it is surprising to see the agreement of the Southwell pressure with 

the test result. This seems to indicate that the model collapsed at the 

buckling pressure of a perfect model, indicating overly optimistic 
3 4 

analytical predictions. Sobel ' has tested models with the same b/a ratio 

as Model 1, but with higher a/h values (70-80) and obtained good agreement 

(+10 percent) with analytical predictions.  Possibly for b/a = 8 and 

a/h = 25, the analysis gives results which are too high. Another inter- 

pretation of the results is that the geometry has unstable equilibrium and 

the Southwell calculation underestimates the buckling pressure. The model 

would then be sensitive to imperfections and fail at. a pressure signifi- 

cantly less than the analytical prediction, and the Southwell pressure 

would be too low.  In this interpretation, the analytical predictions 

would be correct.  Another test of the same model geometry without a hard 

spot is needed to resolve the question. 

The experimental collapse pressure of Model 9 is significantly 

greater than the analytical predictions and the Southwell pressure. This 

is a strong indication that the model failed in the post-buckling region, 

was of the stable equilibrium type, and was not imperfection-sensitive. 

Since the Southwell method overestimates for stable equilibrium, the 

perfect model buckling pressure is actually closer to the analytical 
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predictions than the calculated Southwell pressure. This interpretation 

of the test results for Model 9 is in agreement with the behavior observed 

and photographed as shown in Figure 14. The first visible deflection 

occurred at a pressure of 65 percent of collapse load. Succeeding incre- 

ments of load produced greater deflections until failure occurred. 

Models 4 and 6 were also visually observed and photographed. 

Figure 15 shows deflections of Model 6. The first visible deflection 

occurred at 85 percent of collapse load. However, in view of the good 

agreement of experimental collapse pressure with analytical predictions 

and with the Southwell pressure, these deflections must be interpreted as 

large prebuckling deformations caused by imperfections.  It appears that 

the neutral equilibrium state applies to Model 6 and, hence, the model was 

insensitive to imperfections. The deflections of Model 4 are shown in 

Figure 16. The first visible deflections occurred at the collapse pressure 

and increased with no increase in pressure. Considering this and the 

close agreement of the test result with one of the analytical predictions 

and with thi Southwell pressure, a neutral equilibrium state for the 

perfect shell is indicated. As with Model 6, this indicates insensitivity 

to imperfections. 

The results of Model 10 are subject to two interpretations. The 

experimental collapse pressure is in good agreement with the analytical 

predictions but is significantly greater than the Southwell pressure. 

While the agreement of test and analysis indicates neutral equilibrium, 

the lower Southwell pressure points to stable equilibrium.  In either 

event, insensitivity to imperfections is indicated. 

Table 7 compares the analytical buckling mode prediction and the 

experimental mode determination using measured strains and photographs. 

With the exception of Model 1, both analyses predict the same mode for 

each model. The circumferential wave number (n) for each model was 

determined either by studying the photographs taken during the test or by 

plotting the total circumferential strain near the collapse pressure of 

each of the crown gages and noting the resulting pattern. By comparing 

meridional strains on either side of the 90-270° meridional diameter, a 

determination of symmetric or antimetric deformation was nade. Using the 

photographs, this was done by noting the deformations of opposing crown 
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Figure 14a - No Load Figure 14b - 0.89 PSI, 65 Percent 
Collapse Load, First Visible De- 

formation 

Figure 14c - 1.08 PSI, 79 Percent 
Collapse Load 

Ufl 

Figure 14d - 1.22 PSI, 89 Percent 
Collapse Load 

I 
/' 

Figure 14e -  1.37 PSI,   100 Percent 
Collapse Load, Just Before Col- 

lapse 

Figure 14f - After Failure 

Figure  14  - Deformation of Model 9 During Test 
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- Deformation of Model 6 During Test 

Figure 15a - No Load 

Figure 15b - 1.13 PSI, 85 Percent Collapse 
Load, First Visible Deformation 

1 

Figure 15c - 1.28 PSI, 96 Percent 
Collapse Load 

29 



Figure 15d - 1.33 PSI, ICO Percent 
Collapse Load, Just Before Col- 

lapse 

Figure 15e - After Failure 
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Figure  16  - Deformation of Model  4 During Test 

Figure  16a - No  Load 

Figure  16b  -  4.03 PSI,   100 Percent Collapse 
Load,  First Visible Deformation 

Figure  16c  -  4.03 PSI,   100 Percent 
. Collapse Load 
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Figure  lbd  - 4.03 PSl,   100 Percent 
Collapse  Load,  Just  Before Failure 

Figure   Ue  -  After Failure 

TABLE 7 

Experimental  and Analytical Buckling Modes 

Model 
Sobel and Flügge 

Analysis 
Bushnell Analysis Experiment 

How Determined 
Experimentally 

1 n=2 Symmetric n=0 Antimetric n=2 Antimetric Strain gage 

3 n=0 Antimetric n=0 Antimetric n=? Antimetric Strain gage 

4 n=0 Antimetric n=0 Antimetric n*0 or 2 
Antimetric 

Photograph 

5 n=0 Antimetric n=0 Antimetric n=? Antimetric Strain gage 

6 n=0 Antimetric n=0 Antimetric n=0 Antimetric Photograph 

7 n=0 Antimetric n=0 Antimetric -- -- 

9 n=0 Antimetric n=0 Antimetric n=0 Antimetric Photograph 

10 n=0 Antimetric n=0 Antimetric n=? Antimetric Strain gage 
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areas. An inward deformation on one-crown and an outward deformation on 

the opposite crown indicated an antimetric mode. 

The experimental collapse mode of Models 4, 6, and 9 can be seen 

in the photographs shown in Figures 14, 15, and 16. There is some uncer- 

tainty in the wave number for Model 4.  Figures 17, 18, 19, and 20 show 

the circumferential strain pattern for the crown areas of Models 1, 3, 5, 

and 10. The n=2 pattern of Model 1 is very evident. Models 3, 5, and 10 

had too few gages to positively identify the buckling mode. No mode 

determination could be made for Model 7 since it was neither photographed 

nor strain gaged.  In all models observed and ph^uographed, the crown area 

appeared to be the area of greatest deformation. 

Figures 21-27 present load-strain plots of experimental strains for 

each model tested.  For models having many gages, the plots are for lo- 

cations of maximum strain. Strains based on linear membrane theory are 

also shown for comparison.  It is seen that the experimental strains 

exhibit nonlinearity in all models, which is indicative of bending. This 

is probably due to imperfections.  For Model 1, this is also due to cir- 

cumferential bending caused by the n=2 buckling mode.  For most models, 

linear membrane strains agree significantly better with the experimental 

meridional strains than with the circumferential strains. This result is 

of particular interest in connection with the previously discussed fact 

that linear and nonlinear membrane theories produce almost identical 

meridional stresses, but differ significantly in the circumferential 

stresses. Even though there is disagreement between linear membrane theory 

and experimental, strains, the good agreement between experimental buckling 

pressures and analytical predictions seems to justify the use of linear 

membrane theory in the buckling analysis. 

That each model failed elastically is assured by the fact that all 

measured strains were elastic at collapse. The maximum strain measured at 

collapse was -0.013 in. Der in., the meridional strain at 6 = 270°, 

<$>  = 180° on Model 5.  Comparing this with Figure 3, it is seen that this 

strain is elastic. On most models, the strain at collapse was less than 

0.01 in. per in. With most models, when nonlinear strains were evident 

during a pressure run, the load was removed to detect any permanent set in 

the strains. None was ever detected. 
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CIRCUMFERENTIAL ANGLE e IN DEGREES 

Figure  17  - Model  1,   Circumferential Strains at  8 psi 

»=0 PEG 
a g 1000 
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CIRCUMFERENTIAL ANGLE 6  IN DEGREES 

Figure  18 - Model  3,   Circumferential Strains 
at  14 psi 

4000 

225    270    315   36P 
CIRCUMFERENTIAL ANGLE e IN DEGREES 

Figure 19 - Model 5, Circumferential 
Strains at 22.5 psi 

2500 

* - 2000 
K 

1500 
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Figure 20 - Model   10,  Circumferential 
Strains  at  5.5 psi 
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Those strains which were continuously recorded along with pressure 

during testing increased at an accelerated rate near collapse pressures. 

In some cases, the strain increased with no increase in load. This would 

seem indicative of creep, but cannot be because strains are elastic. This 

is probably th<^ result of the perfect shell having a neutral equilibrium 

state, causing imperfections to produce large deflections as the load- 

deflection curve asymptotically approaches the buckling pressure. 

CONCLUSIONS 

1. l"he Bushneil analysis agreed with test results with the exception of 

Model 9, which exhibited post-buckling strength, and Model 1, whose 

results are questionable. 

2. The Sobel and Flügge analysis agreed with half the models tested.  It 

tended to be too optimistic at b/a ratios of 2.35 and 3.58. 

3. Of the two analyses, the Bushnell analysis appears to be the more con- 

servative. 

4. It was possible tc experimentally determine the buckling mode of models 

where sufficient data was obtained from strain gages or from photographs. 

Strain gages are the better indicator of mode. 

5. The experimental strains exhibited a high degree of nonlinearity, 

probably due to imperfections. 

6. for most models tested, at loads up to half the collapse load, theo- 

retical strains based on linear membrane theory were in good agreement 

with experimental strains for the meridional direction, but not for the 

circumferential direction. 

7. Test results indicate that complete toroidal shells under uniform 

external pressure are insensitive to imperfections. 
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APPENDIX 

DESCRIPTION OF ANALYSES 

ANALYSIS OF SOBEL AND FLÜGGE 

The analysis of Sobel and Flügge for the prediction of elastic buck- 

li.ig pressures of toroids under uniform external pressure is described in 

detail in References 3 and 4.  A brief description of the analysis will be 

given here. 

A linear membrane analysis is used for the prebuckling solution, 

and ;i:kling pressures are calculated from stability equations for a 

• roid which are obtained by specialization of the stability equations of 

LMieral shell of revolution.  The stability equations for the toroid are 

.. using Fourier series representations of the displacer. ent components 

1 • •.! during buckling.  Buckling modes which are symmetric and anti- 

about line A-A in Figure 1 are considered. 

The following assumptions are made for this analysis: 

1) The shell material is isotropic, homogeneous and obeys Hooke's 
law (linearly elastic). 

2) The shell thickness is constant. 

3) The shell thickness is small in comparison with the radii of 
curvature of the middle surface. 

4) Normals to the middle surface before deformation remain normal 
after deformation with no change in length. 

5) The normal stresses acting on surfaces parallel to the middle 
surface are small compared to other stresses and may be neglected 
in the stress-strain relations. 

(>) All incremental quantities are infinitesimal. 

7) The incremental strains are small in comparison with the incre- 
mental rotations. 

8) The basic state may be approximated by a membrane state of 
stress. 

Equilibrium equations are developed for a general shell of revolu- 

tion . ased on the deformed state of the shell. This is accomplished with 

a linear stability analysis where.n the effects of prebucklinp rotations 

are neglected. The equations are a system of partial differential 

equations with variable coefficients.  For the case of axially symmetric 

loading (uniform external pressure), the coefficients in the equilibrium 
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equations are independent of the circumferential coordinate (6). Hence, 
• 

separation of variables is possible which reduces the equations to ordinary 

differential equations.  To accomplish this, the displacements, force and 

moment resultants, strains, and rotations in the equilibrium equations are 

represented with Fourier series expressions in the circumferential (0) 

direction. The expressions for the displacements are (Figure 1) 

00 

u = y    un^^ 
c°snO (la) 

n=o 
CO 

v =y^   vn^ sinne (lb) 

n=l 

w - /1  w (<J>) cosnö (lc) 

n=o 

The equilibrium expressions are in terms of displacements, forces, 

moments, strains, and rotations. However, using the elastic law (relations 

between stress and displacement), strain-displacement relations, and 

curvature-displacement relations, the equilibrium equations ar  obtained 

in terms of displacements only. These equilibrium equations are the 

stability equations for a general shell of revolution under axially 

symmetric loading. 

The stability equations are then specialized for the toroid geometry 

under uniform external pressure. The linear membrane solution from 

Reference 9 is used for the prcbuckling stresses. The resulting stability 

equations for the toroid consist of three linear homogeneous ordinary 

differential equations with variable coefficients. The unknowns in these 

equations are the displacement components u (<}>), v (4>) , and w (4>) . Next, 

the displacement components are represented by Fourier series in the 

meridional (4>) direction. 
CO CO 

"„(•)   =   /    U    sinm<J> +    /    Ü    cosm<t> (2a) n ^^    m ^^     m 
m=l m=o 
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v   (4))   =   y   V    cosm<t> +     y    V    sinm<}> (2b) 

m=o m=l 

w (<J>) - /    W cosing + ^ W sinmt}) (2c) 

m=o m=l 

The series with Fourier coefficients U , V , W represent a buckling mode 
m  m  m  r 6 

which is symmetric about line A-A in Figure 1. The coefficients U.V. ' & m'     nr 
W    represent a buckling mode which  is a.rtimetric  about this  line. 
m 

Using equations (2) together with some trigenometric identities, 

the stability equations are reduced to an infinite system of linear homo- 

geneous algebraic equations of the form 

l» 00 

/^ A    sinm<|> +   /   A    cosmc}> = 0 (3a) 

m=l m=o 

/    Bm cosm<J> +   y    Bm sinm4. = 0 (3b) 

m=o m=l 

/    C    cosm4> +     7    C    sinm<}> = 0 

where 

   m       /   .     in 
m=o m=l 

A * A (U ,V ,W ) , A = A (U ,V ,W ) 
m   m m m m    m   m m' m m 

B  = B (U ,V ,W ) , B  = B (U ,V ,W ) 
m   m m m m   m   m m m m 

C = C (U ,V ,iv ) , c = C (U ,V ,K ) 
m   m m m m    m   mv m m m 

(3c) 

Since sinnu* and cosm; are linearly independent, in order for equations 

(3) to be satisfied, we must have 
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• 

A = B = C = 0 
m   m   m 

A = B = C =0 
m   m   m 

Hence, the Fourier coefficients U ,V ,W may be determined from a set of 
* nr nr m J 

equations which do not contain II ,V ,W . This means that the toroid under n m nr m 
uniform external pressure can buckle into a mode that is either symmetric 

or antimetric about line A-A in Figure 1, and these modes can be investi- 

gated separately. The symmetric mode is referred to as Mode A and the 

antimetric mode as Mode B. 

The solution of the stability equation will be ou* i for Mode A 

(the symmetric mode). The solution for Mode B is similar. The displace- 

ment components for Mode A are represented as 

CO 

u (<J>)  •  y   U    siraiKt (4a) 

m=l 

vn((fi)   =y^  V    cosm<f> (4b) 

m=o 

CO 

w  (<!>}  •  y    VI    cosmd) (4c) n /    >    m 
m=o 

Inserting these equations into the stability equation In its differential 

form results in a set of linear homogeneous algebraic equations similar to 

equations (3). 

z 
m=l 

CO 

I 
m=o 

A    sinm<f) = 0 (5a) m 

B    cosm<{) = 0 (5b) 
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r, C    co5m<|) = 0 m 
m=o 

Since  sinm<J> and cosnn}> are  linearly independent,  we must have 

A = 0 
m 

= 0 

C = 0 
m 

(5c) 

(6a) 

(6b) 

(6c) 

By letting m=l,2,3,... in Equations (6), we obtain an infinite system of 

algebraic equations having the Fourier coefficients U .V ,W as the ft      n & nr m m 
unknowns. 

Using matrix notation, Equations (6) are written as 

[R] {vj - u[S] jv) = (o) 

where [Rj and [S] are square coefficient matrices and 

(7) 

m 
V *! V 

and 

A " pa 

Eh 

The objective of the stability analysis is to determine the lowest 

value of A (the eigenvalue) for which Equation (7) admits a nontrivial 

solution (the eigenvector). The components of the eigenvector arc the 

Fourier coefficients U ,V ,W . The displacement functions 
m m m 

u„($) = y   U sinm4> n    •(    '    m 
m=l 
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• 

v (A) = y    V cosm<J) 

m=o 

wn(*) =/?l  Wm cosm* 

m=o 

corresponding to the eigenvalue X are called the eigenfunctions or mode 

shapes in the meridional direction. 

To obtain a solution for Mode A to a particular problem of known 

geometry, an initial value of n (number of circumferential waves) is 

selected.  By assigning a value to m, the infinite system of algebraic 

equations (6) is reduced to a finite set of equations. 

A matrix iteration technique is used with the algebraic equations 

in matrix form, Equation (7), to determine from Rayleigh's quotient the 

lowest eigenvalue X of the finite set of equations. Next, the size of the 

set of equations is increased by increasing the value of m, and the lowest 

eigenvalue X of the new set of equations is determined as before. This 

procedure is repeated until the successive values of X have converged to a 

value X  . Then by varying n and repeating the iterative process with m, 

we obtain a set of these values X , one for each n considered. The so- 

lution (X ) for Mode A is given by the minimum value of X  in this set. 

The critical buckling pressure for Mode A is 

Per • »„(*) («) 

This solution procedure was programmed by Sobel and Flügge for the IBM 7094 

computer. 

The solution for the antimetric mode, Mode 6,   is obtained in a 

manner similar to that for Mode A.  For Mode B, the displacement components 

are represented as 

unO) • y   Ü"m cosm* (9a) 

m=o 
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'„<•> -Z V    sinm<J) 

m=l 

(9b) 

wnu) =27 W    sinm<{> 

m=l 

The solution procedure is the same as for Mode A. 

stability equation is 

[R] V - U[S] V = 0 

(9c) 

In matrix notation, the 

(10) 

where [R] and [S] are square coefficient matrices and 

/ - 
U 

|v)=. 

w 

The critical buckling pressure for Mode B, P , is obtained in the manner 

described for the symmetric mode (Mode A). 

The buckling pressure for the toroid under consideration is the 
A     B lesser of the two buckling pressures P  and P . The toroid will buckle or er     cr 

in the meridional mode (symmetric or antimetric) and in the circumferential 

mode (n) associated with the buckling pressure. 

.ANALYSIS OF BUSHNEU 

The analysis of Bushneil for the prediction of elastic buckling 

pressures and natural frequencies of vibration of shells under uniform 

external pressure is described in detail in Reference 6. A brief 

description of the analysis will be given here. 

The complete analysis is for any shell of revolution with or with- 

out sti^feners; however, this description is oriented toward the unstiffened 

toroid and includes only those parts of the analysis pertinent to this 

geometry. 
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The analysis utilizes an energy method and the finite difference 

technique to solve the buckling problem.  Prebuckling quantities are 

determined from linear membrane analysis. There is a nonlinear prebuckling 

analysis available as part of the analysis, but it was not used for the 

toroid. The assumptions governing the analysis are: 

1) The material is elastic. 

2) Normals to the middle surface before deformation remain normal 
after deformation with no change in length. 

3) The structure and loads are axisymmetric, and the prebuckling 
or prestress deformations are axisymmetric. 

4) The prebuckling deflections, while considered finite, are 
moderate. That is, the square of the meridional rotation can 
be neglected compared to unity. 

The energy method used in the analysis is based on the definition of the 

Hamiltonian formed from the sum of the potential energy and the kinetic 

energy of the deformed state of the shell 

H = U - T + UA + uB an 
•i   s   s   c   c v ' 

where 

n is number of circumferential waves, 

U is shell strain energy, 

T is shell kinetic energy (this term is zero for the buckling 
problem), 

A     B 
U and U are constraint conditions at the A and B ends of the 
c     c 
toroid meridian (see Figure 28). 

The Hamiltonian is reduced to an algebraic form by expressing the 

strain energy and constraint conditions in terms of buckling displacements 

and their derivatives. The derivatives with respect to the meridional 

coordinate are simulated by two and three point finite difference formulas. 

Derivatives with respect to the circumferential coordinate are eliminated 

because u=u sinne, v=v cosnö, w=w sinne. The resulting algebraic 

form is 

\  = [q] [l^J • [K2]]|qj (12) 

47 



where 

[q]  is vector matrix of dependent variables including displace- 
ments and Lagrange multipliers corresponding to the constraint 
conditions, 

[K.] is stiffness matrix of the undeformed and unstressed shell, 

[K-J is matrix of prestress terms contributing to the stiffness 

matrix. 

[K ] and [K-] are obtained from expressions for strain energy and con- 

straint conditions as will be described. 

The integral form of the shell strain energy is written as 

Us -jf [PI {^)+ M [N0] |u>) + [d] [P] [djjrds       (13) 

meridional 
shell 
length 

where 

[S] is vector matrix of buckling stresses and moment resultants, 

l~] is vector matrix of rotation components, 

[N_] is matrix of prestresses, 

[dj is vector matrix of displacement components, 

[P] is matrix of pressure loading. 

|, I • , Id are matrices in terms of geometric variables and displace- 

ments obtained by utilizing Novoshilov's strain-displacement and curvature- 

displacement relations. 

In order to use the finite difference technique, nodes or mesh 

points arc located along the shell merdian, and the Hamiltonian is written 

at each mesh point.  Hence, the integral expression for strain energy can 

be written in finite difference notation as a summation over the mesh 

points along the meridian. The finite difference representation of the 

displacements and their derivatives are 

u = 
lui * "i-i1 

v = 
lvi • vi-i> 

w = w. 
1 
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du      (ui  - Vlj dv _   (vi  - Vi-1} dw __  (Vl  - Vl} 

ds      ,.       ds "     u       ds 2h 

.2   (w. . - 2w. + w. ,) 
d w _ v l+l i   i-ly 

2 "        2 
ds h 

and the strain energy expression takes the form 

N 
us = f27riAsitqi] tzlWI (14) 

i=l 

where 

r. is radius at i  mesh point, 

As. is weighting factor, 

N is number of mesh points. 

A     B The constraint conditions U and U are the equations of displace- 

ment and rotation compatability at the ends of the shell meridian. These 

equations take the form 

u 

uA 
c 

•B = [x*'B. xA'B, x*-B. xA'B] [K
A
'
B
] [Q

A
>
B
 . x0QA'B]| v] J     (15) 

w 

where ^ 
AB  AB  AB  AB 

*i* »   ^j*   >  **' '  '^A      are tne ^agrange multipliers associated with 

constraints on displacements and rotations at the ends of the meridian 
*  *  * 

u , v , w , x are displacements and rotation at the ends of the 

meridian 

X   is a prebuckling rotation, 

A B Q.• is a transformation matrix, 

A B 
Q '  is a matrix representing the effect of prebuckling meridional 

rotation on the transformation, 
A B 

K '  is a matrix governing which displacement conditions are satis- 
fied at the ends of the meridian, depending on an element 
being either 0 or 1. 
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The stiffness matrices [K ] and [K ] in the Hamiltonian are written 

usiu^ the expressions for strain energy and constraint conditions. 

The buckling pressure is the eigenvalue of the pressure that causes 

II to be an extremum. The eigenvector is the mode shape. The extremum is 

formed by minimizing H with respect to all of the [q] components. This 

generates a set of linear homogeneous algebraic equations 

[[K,] • [K2]] (q) = Ü 

The lowest eigenvalue satisfying 

[[Kj] • [K2]l = 0 

(16) 

(17) 

gives the buckling pressure, and the corresponding eigenvector gives the 

mode shape. To solve for the eigenvalue, the analysis uses a technique 
19 

of successive approximation similar to that used by Cohen, * to converge 

on a solution. 

The analysis was performed using a computer program written by D. 

Bushnell and currently in use at NSRDC.  In using this analysis to calcu- 

late the buckling pressures for the toroid models tested, the following 

boundary conditions were used for buckling displacements and rotations at 

the ends of the meridian labeled A and B (Figure 28): 

Symmetric Mode 

A end of meridian B end of meridian 

u* V* w* X(rotation) u* V* w* X(rotation) 

0 0 0 free 0 0 0 free 0 

1 0 free 0 0 0 free free 0 
2,3 0 free free 0 0 free free 0 

Antimetric Mode 

A end of meridian B end of meridian 

u* V* w* \(rotat ion) u* V* w* x(rotation) 

0 0 0 0 free free 0 0 free 

1 0 Ü 0 free free Ü 0 free 

2,3 free 0 0 free free 0 0 free 
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. __ 

Figure 28 - Toroid Meridian used in the 
Bushnell Analysis 
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under uniform external pressure appear to be insensitive to im- 

1                 perfections. 
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